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Vibrational properties of an elastic continuum with 
dislocations and disclinations: a gauge approach 
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Joint Institute for Nuclear Research, Bogolubov hboratory of Theoretical Physics, 141980 
Dubna. Moscow Region, Russia 

Received 8 August 1994, in final form 1 I October 1994 

Abstract. We study, in the framework of a gauge approach, the problem of small vibrations 
in an isotropic elastic continuum against the background of a static distonion due to a linear 
defect. In the approximation, which is linear in the dynamical displacements, the equations of 
motion for an isotropic elastic continuum with a topological defect are obtained. An analysis 
of the vibntional spectrum is presented for elastic materials with a screw dislocation. a wedge 
disclination and a disclination monopole. In the case of a screw dislocation the known results 
of classic defect theory are reproduced. For a wedge disclination, with a small non-integer 
Frank index, only minor changes of the specmm are found to appear. It is shown that the 
situation is changed remarkably for topologically stable disclinations. In this case we deal with 
another topalogical sector, and the character of the vibrations differs essentially from that for 
topologically unstable defects. 

1. Introduction 

The dynamical properties of elastic media can be modified in the presence of linear defects 
such as dislocations and disclinations. As is known (see, for example, [I]), dislocations can 
affect lattice vibrations in two ways. The first possibility comes from large deformations in 
the core region of a defect. As a consequence, the elastic moduli are substantially perturbed 
near the dislocation line. This can result in the localization of vibrational modes which 
are split from the edge of the continuum spectrum of bulk acoustic waves [Z]. The second 
possibility is due to the fact [3,4] that elastic stresses caused by a dislocation can also be 
a reason for the localization of small harmonic vibrations against the background of the 
deformed lattice. At the same time, the dynamical properties of disclinated media are less 
well known. The reason is that only defects with a small Frank index can be considered in 
the framework of the standard theory, which is based essentially on the linear connection 
between stresses and strains. 

In this paper we study the long-wave elastic vibrations in the isotropic defect media 
within the framework of the gauge theory of dislocations and disclinations formulated 
first in [ 5 ] .  This theory is essentially non-linear in origin. It should be pointed out that 
there currently exist several powerful mathematical methods for the description of elastic 
continua with topological defects. One of them includes the pure topological analysis 
of defects in solid  continua^ [6,7]. Probably the most natural and elegant method was 
developed in [8,9], where the differential geometric representation of dislocation theory 
was established. Unfortunately, the application of the methods of non-Riemannian geometry 
in defect theory meets with considerable mathematical difficulties, particularly beyond the 
perturbation theory analysis (see, for example, [IO]). 
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An alternative approach is the gauge theory of defects in continuum media 15,111. It 
turns out that, like the known gauge approach first introduced by Utiyama in gravitational 
theory (see, for example, a discussion on the applicability of gauge constructions in 
gravitational theory in [12]), the gauge model is quite suitablc for the description of dcfcct 
media. Moreover, it was shown recently [13] that some predictions of the differential 
geometrical approach in defect theory are recovered within the gauge model, thus indicating 
the possible similarity of these methods. On the other hand, the gauge approach was 
shown to be successful in the study of topologically stable rotational defects with integer 
Frank indices. In particular, the exact solutions of the completely non-linear problems of a 
disclination vortex and disclination monopole were found in 114,151. Since the dynamics 
of elastic media containing topological defects is of interest, it is reasonable to study this 
problem within the gauge approach. 

The paper is structured as follows. In section 2 we construct the general scheme and 
obtain the equation describing small vibrations in the presence of a linear defect. The case 
of topologically unstable defects will be considered in section 3. To illustrate the method, 
we reproduce the known vibrational spectrum of a body with a straight screw dislocation. 
We also study radial acoustic waves in a thin elastic disk with a fractional disclination 
vortex (the straight wedge disclination). The character of the vibrations in the presence 
of topologically stable disclinations (a disclination vortex and a disclination monopole) is 
studied in section 4. Section 5 is devoted to concluding comments. 

2. The general scheme 

Elastic vibrations in isotropic defect media can be studied by considering small vibrations 
against the background of a statically deformed lattice. In the framework of the gauge 
approach, this can be realized by including small dynamical displacements in the state 
vector ~'(x, t ) ,  Namely, we can write 

where f ' ( s )  denotes the state vector in the presence of a static defect, and ui(z, f )  are 
the small dynamical displacements. It is clear that such a representation will generate the 
form of all other tensors presented in the gauge model (see [5]). For instance, the distortion 
tensor takes the following form: 

". 
where E: = a,f' + HA, = eAkWfx' + 4; in three space dimensions (d = 3) and 
ff: = $W,,yJ +4: in the planar case (d = 2). Here completely antisymmetric tensors 
6:' and E; are the generating matrices of the gauge groups SO(3)  and SO(2). and W; and 
4; are the compensating gauge fields associated with the disclination and dislocation fields, 
respectively. Summation over repeated indices is assumed, a = (A ,  4}, a, = @/axA),  a4 = 
(a/&).  Greek indices and capital letters take their values from sets (1,2,3) for d = 3 and 
(1, 2) for d = 2, respectively. The strain tensor is determined to be 

-. I 
where I?AB = BIB;  - SAB. Hereafter we restrict consideration to an approximation that is 
linear in the dynamical displacements. To avoid cumbersome expressions we will sometimes 
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omit the right order of the top and bottom indices, which can be easily restored by using 
the appropriate 6 symbols. The stress tensor takes the following form: 

U:' = 6:' + U;" (4) 

and SPE.AB = EAA = EXz + kyy + EZz,  with h andfi  being the Lam6 constants. As in the 
classical theory of elasticity, we will keep in (4) only the terms that are linear in the strain 
tensor. In this case, the static stress tensor is determined to be 

6; = fF$(h6ACSpEAs + 2 i E A C ) .  (6) 

Since we are interested only in the vibrational properties of defect media we can restrict 
our consideration to the equation of balance of the linear momentum presented in [5,16]. 
With (1H6) taken into account, it can be written as 

atpi - aAu; = pi (7) 

where the momentum pi = p&,(a,xj + H i ) ,  po is the mass density in the reference 
configuration. and 

pi = &w;pj - w;# + F,u,R~"~) 

pi = eij(w3pj - wA$ + F,~R, "h  

(8) 

in three space dimensions (the gauge group G = T(3)  D SO(3)) [5]. and 

(9) 

in two space dimensions with the gauge group G = T(2)  D SO(2) [ 161. We will not clarify 
here the explicit form of the tensors F and R (for details see [5,16]) since, in fact, we will 
consider in this paper only problems where either dislocations or disclinations are present 
in the elastic continuum. In both cases the last  term does not appear in the right-hand 
sides of (8) and (9). We assume also that gauge fields due to defects are static ones. This 
correlates with the problem since we study the dynamics of an elastic continuum against 
the background of the static defect. In this case. (7) can be simplified. Namely, one gets 
pi = poarui, P; = pi + P; where pi = -eLiW;6f, P; = -eLiW;Up for d ' =  3, and 

~ 

~ 

p. I - - -c!w I A U ~  - A  , P, * - - - E; j W A U ~  ford = 2, so that finally 

poa:ui - aAu; = P; (10) 

where the static equations -aA6; = p, are assumed to be fulfilled. Let us emphasize that 
(IO) is the most general form of the dynamical fieWequation in an approximation that is 
linear in displacements u i .  In order to study (10) we need the explicit form of the distortion 
tensor in the static case. Fortunately. there are some exact solutions of the static defect 
problems [5.14, 15,171 which allow us to study the dynamical problem in detail. 
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3. Topologically unstable defects 

A topological analysis shows [6] that defect states of the medium may be classified by 
topologically stable classes (the homotopy classes). The trivial class contains the reference 
configuration and topologically unstable defects. Defects of this sort can be transformed 
into the homogeneous state by a local alteration of the order parameter. On the other hand, 
defects from the first and other homotopical classes are topologically stable ones. In this 
section we will consider linear defects that belong to the trivial class. The static state vector 
for elastic media with such defects can be written as f ' ( x c )  = 6LxB + Z'(xc) where Z'(z) 
are the static displacements~caused by a defect. In this case, (2)  takes the form 

-. 
BX = 6; + Tj  (11) 

where Ti = ani '  + Hi determines the contribution to the distortion tensor associated with 
a defect. When Ti = 0, we get the distortion tensor of the reference (homogeneous) 
configuration, and thus classic elasticity theory is recovered [5]. It is of importance that 
Ti turns out to be proportional to either one of the components of the Burgers vector b or 
the Frank index U. As is known, in the linear theory of defects the values of b and U are 
assumed to be small, so that perturbation techniques may be applied. In the following we 
will keep only terms that are linear in b or U. The tensor U;", linearized in such a manner, 
takes the following form: 

U: = hsfasUB + F(aAui + aiuA) + CA (12) 

where 

Finally, the equation describing small vibrations of isotropic elastic media with topologically 
unstable defects is written as 

where A = a,' + a; + a,", and 

Ji = aAGf f PT. (15) 

Notice that when there are no defects, the right-hand side of (14) turns out to be zero and 
we recover the equation of motion for isotropic elastic media which is well known in the 
classical theory of elasticity 111. As is also known, the solutions of (14) in the defect-free 
case are longitudinal and transverse waves with dispersion laws o = klvl and w = k , y ,  
respectively. Here U] = [(A + 2j~)/po]'/~ and ut = (p/p0)'/' are the corresponding sound 
velocities. 
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3.1. Dislocations 

In this subsection we consider disclination-free materials. In this case, there is no breaking 
of the homogeneity of the action of the rotation group, so that one has to put gauge fields 
W i  equal to zero in all formulae. In particular, the form of Ji in (14) will be essentially 
simplified. To illustrate the method presented in the previous section, let us consider here the 
simple example of a straight screw dislocation oriented in the zth direction. This problem 
was studied earlier in [3,4] within a classical approach. It is interesting to compare the 
classical results~with those obtained in the framework of the gauge approach. In the linear 
approximation, a solution for this defect was found to be [II ,  131 

where other components as well the static displacements vanish, r2 = x2 + y2, and b is the 
zth component of the Burgers vector. As is known [6], there are problems with applying the 
topological method to media with broken translational invariance in the uniform state. The 
reason is that, in general, the order parameter cannot be properly defined in such systems. 
In crystals, however, line defects are characterized by Bravais lattice vectors and the very 
existence of these vectors allows one to determine the topologically stable classes. On the 
other hand, in an elastic continuum there are no formal restrictions on the value of the 
Burgers vector and thus we consider the solution (16) as belonging to the trivial topological 
 class. As is seen, for (16) one has Sp@., = 0 and aA@; = 0. Therefore, one gets 

J ,  = 2 ~ 4 6 ~ ~ ~  + (h+p)+:aaaiUj + ( ~ + + ) @ ; a ~ a ~ ~  + z ~ @ ; a ~ a ~ ~ ~  
+ zcL(aA@;)@AU') + cL(aA&)(aBuA) + vai&asu3.  (17) 

Let us consider an elastic wave uz(r, 8, z, t) propagating~along the dislocation line. In this 
case J, takes the form 

J, = A(&axa,uz + ~ ; a y a r u i )  (18) 

where A = 6p + 2h. One can easily check that this expression is just the same as that 
found within the standard approach [3,4]. The solution of (14) with (18) is well known, 
namely [3,4] 

u2(r,  8, z, t )  = x ( r )  exp[ik(z + bO/Zrr) + im8 - iwr]. (1% 

For m = 0 the spectrum was found to contain localized levels with a dispersion law 
$k2 - m i c '  - exp(-A/blkl) where A is a characteristic parameter (see details given 
in [3,4]). It was noted that this modification of the spectrum must be taken into account in 
the study of the low-temperature thermodynamic properties of defect crystals. 

3.2. Discfinations 

In this subsection we will study the case when only disclinations are present in the isotropic 
elastic continuum. It is clear that now terms with @; have to be omitted in (14). We are 
able to analyse (14) only knowing the explicit form of static fields WA and displacements 
U'.  Recently, in the framework of a linearized gauge model, the exact solution for a 
fractional disclination vortex has been obtained [17]. It was shown that the stress and 
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strain fields associated with the disclination vortex are just the same as those for a straight 
wedge disclination with a non-integer (but small) Frank index in classical theory. When the 
disclination is oriented along the z axis the problem becomes, in fact, a two-dimensional 
one in the plane normal to the disclination line. In  this case, the following solution was 
found 1171: 

where U is the Frank index and 

ii' = x ' (c~ I n r  + ~ 2 ) .  (21) 

Here r2 = x2 + y2, Cr = -v/(L + 21, L = k/p and C2 is an arbitrary constant which can 
be fixed by using the appropriate boundary conditions. In general, stress fields caused by a 
disclination turn out to diverge both at r 4 0 and r + 00. As is known, this difficulty may 
be avoided by considering a single defect in a sample of finite size. The classical problem 
of this sort is a straight wedge disclination in a cylinder or in a thin disk. Let us consider 
small vibrations in the plane normal to the disclination line. In cylindrical coordinates (I-, .9), 
(14) takes the following form for acoustic radial waves: 

P&U, - ( h  4- ~ ~ ) A R U ,  = Jr. (22) 

Here ARU = a:u + (l /r)a+ - ( I / r 2 ) u ,  and we have supposed that U, = U = u(r, t) does 
not depend on 8 because of isotropy. Then, J, is written as 

1 1 
Jr = A(r)a:u + -B(r)a,u r - ;;C(r)u (23) 

where A(r) = h(r) + (3h + 6fi)Ci - AV, B(r)  = h(r) + (7h + 12p)Cj,  and C ( r )  = 
h(r) - hC1 - (4h + 8p)u where h(r) = (4h + 6p)(C1 I n r  + C2). 

Let us consider harmonic vibrati.ons, choosing u(r, t )  = u(r)cos(wr+y). For a cylinder 
of radius R the constant CZ was determined to be [I71 C, = (v/Z) + [ u / ( L  4- 2)]  InR. 
Therefore, we get an equation for u(r )  in the form 

1 
r a?u(r)ll - v ( f ( r )  - K ~ I +  -a,u(r)[l - v ( f ( r )  - &)I 

1 + ;iu(r)[k2r2 - (1 - u(f(r) + K3))] = 0. 

Here f(r)  = 2(2L + 3 )  ln(r/i?), Kl = L / ( L  + 2), k'2 = .2(L2 - 3 ) / ( L  + 2)*, 4 = 
2(L + 1)(L - 5)/(L + 2)* and k2 = 0 2 / u : .  

When U = 0, (24) describes the radial long-wave vibrations of a thin defect-free disk 
and takes the form 

a:uo(r) + ;aruo(r) 1 + ( ?  ko - 3 U&) = 0. (25) 

This is the well known Bessel equation, with a solution U&) = Jl(kor) where 4 is 
the corresponding Bessel function. Thus, in the defect-free case, the radial waves are 
uo(r. t )  = A J I  (or/ul) cos(wt + y )  where A is a constant. The vibrational modes can be 
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found from the boundary condition J,(oR/u,)  = 0. They are w = 4 = yru,/R, where 01, 

is the nth zero of the Bessel function J I (x ) .  The general solution can be written as 

These are harmonic vibrations with frequency oC; and an r-dependent amplitude 
A, 5, (cxnr/R). To analyse (24) in the presence of a defect, let us take into account the 
fact that the Frank index v is assumed to have a small value, so that one can consider v as 
a small dimensionless parameter and conventional perturbation technique can be used (for 
details see [18]). Namely, the solution of (24) can be written as u(r) = uO(r)+wu,(r)+. . ., 
and o = 00 + v u ]  + . . .. In this case, the zeroth-order equation is given by (25) whereas 
in the first-order approximation one gets 

We will not specify the form of the right-hand side of (27) since we do not plan to study (27) 
in detail here. In some respects this problem is close to the problem of a round membrane 
considered in [18]. Even'withont solving (27) one can conclude that only minor changes 
of the vibrational spectrum will appear. It should be emphasized, however, that we do 
not consider here the perturbation of the elastic moduli in the core region of the defect 
which can also result in the localized long-wave modes. In addition, within the continuum 
approximation used, we cannot discuss the role of modes with short wavelengths in the 
vibrational spectrum. 

4. Topologically stable defects 

As was noted in [SI, the linear elasticity approximation based upon expansion in the scaling 
parameter of the gauge group is effective because of the assumption that the reference 
configuration is defect free. A topological analysis shows [6], however, that an elastic 
continuum can contain defects of a different kind. These defects belong to the non-trivial 
topologically stable homotopy classes, i.e. they cannot be eliminated by a homogeneous 
deformation of the order parameter. In this case, the reference configuration turns out to 
be in another topological sector and, to study the topologically stable defects, we have to 
discard the assumption that the reference configuration is defect free [5]. As a consequence, 
the distortion tensor cannot be presented in a simple form (11). Hence one has to turn 
back to (IO) with Up determined in (5). As previously, we need the explicit form of the 
distortion tensor. Notice that in the framework of the gauge approach it has been possible 
to obtain two exact solutions for the topologically stable disclinations, such as a disclination 
monopole [14] and an integer disclination vortex [15]. This provides the detailed analysis 
of the vibrational problem in disclinated materials. 

4.1. Disciination vortex 

An exact solution for a static disclination vortex with an integer Frank index was found to 
be [15,16] 



96 VA Osipov 

where n can have any integer value (1.2,3,. . .). We will consider here the case n = 1. 
For this solution the distortion tensor takes the form 

Here the function g(r) = a,F(r) was found to,be g ( r )  = Nog(r), where 

with ro a characteristic parameter that defines the core region of the defect, N t  = 
8(A + p)/3(A + 2p), and 1 = 0, 1.2. In the following we restrict ourselves to the case 
1 = 0. Notice that (29) differs drastically from (11). Indeed, as is known, in the gauge 
model [5]  the metric tensor can be determined as g A B  = B i B b .  One can see that for 
(11) the metrics of the reference configuration only slightly differ from the Euclidean 
one  AB) whereas this is not the case for (29). The strain tensor is determined to be 
BA, = BkBb - JAB = (iAxB/r2)g2(r) - JAB. It should be noted that both strains and 
stresses do not diverge as r + CO. To study the vibrational states of the disclinated material, 
let us consider (IO). Using (28) and (29) we obtain that 

-. -_ 

and 

For the sake of convenience, let us study (10) in cylindrical coordinates. We will consider 
harmonic acoustic radial waves: U,', = u(r, f) = u(r)cos(wt + y ) .  In this case, the final 
equation for u(r) is found to be 

(33) 

where f ( r )  = (A + p)(4g2(r) - 1). It is well known (see, for example, [19]) that an 
equation of the type U" + P(x)u'+ Q(x)u = 0 can be put into the form Z" + Z(x)z = 0 by 
the substitution u(x) = z(x) exp[-(1/2) 1 P ( x ) d x ] .  It is easy to check that in  our case 

1 Pow2 $u(r)+ -[I +ra,lnf(r)]a~u(r)+--u(r) = o  
r f (4 

exp -- P(r)dr = I[rf(r)]-"*. (:s ) (34) 

Thus, instead of (33) we obtain 

a,?z(r) + I(r)z(r) = o (35) 

where 
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and F(r) = a, In[rf(r)]. Let us analyse (35). Although a general solution of such equations 
does not exist, important information can nevertheless be obtained from the asymptotic 
solutions. In view of (30) one obtains that, at large distances from the disclination line, 
r ( r )  + uz/u,’ where U,’ = 2(A + @)/po. It is important to note that the velocity U, differs 
from the sound velocity U, in the defect-free case. Thus, vibrations take the form 

where A is a constant. At the same time, for r -+ 0, I(r) tends to infinity as r-’, and 
the asymptotic solutions for u ( r )  take the form u(r)lr-o - rZp and u(r)lr+o + uo where 
uo is a constant. An interesting question arises as to the character of vibrations in the 
core region. Within the classical approach it is assumed that phonons do not penetrate 
the core region [1.4]. Since in our case g(r) is determined over a wide space interval 
including the core region we can study this problem in detail. The analysis shows that, for 
r + ro, I(r) + pow2/3(A+ p) + ( C / r t )  where C > 0. Thus, in our case. vibrations will 
penetrate the core region of the disclination. It is important to note that for the long-wave 
(small-o) vibrations which are of interest here, the first term in (36) becomes negligible in 
the core region. Hence u(r) becomes independent of w and U, in this region. It differs 
essentially from the defect-free case where all points of the elastic continuum oscillate 
harmonically with the same frequency W; (see (26)). It should be noted, however, that the 
results concerning the core region become incorrect when ro approaches the lattice constant. 
In this case the continuum description itself ceases to be true. 

4.2. Disclination monopole 

The exact solution for a disclination monopole was obtained first in [14]. In contrast to the 
linear defects considered so far in this paper, a disclination monopole is a point-like defect. 
In many respects it looks like a ‘hedgehog’ known in liquid crystals (see, for example, 1201). 
Let us study briefly the vibrational properties of an elastic continuum with a disclination 
monopole. The solution’ror this defect takes the form 

(38) 
X B  X’ 

x i ( x A )  = F(r ) - .  W;(X’) = eiBF r 

Here r z  = X * X A  = x 2  + yz  + z2 .  The Frank index for this solution is n = 1. As is seen, 
this solution possesses spherical symmetry. The distortion tensor has the same form as (29) 
where, however, N i  = 4(3A + 2@)/3(A + 2p) and 

(39) 
&(r) = cosh[+ co~h-’(ro/r)~] r < ro 

r 2 ro. 
i(r)  = - 1 gz(r )  = -cos[~cos- l ( r~/r)z  + $TZ] 

One can easily check that the expression for U;“ is almost the same as (31) with only the 
replacement S p i A E  = gz(r) - 3 taken into account. In this case, the last but one term 
in (31) takes the form iA(g2(r) - 3). Accordingly, the last term in (32) is modified as 
(3A/2 + p)a,uj. Finally, (33) is rewritten as 
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where f ( r )  = (3h/2 -!- f i ) (4f2(r)  - 1). 
In the classical theory of elasticity the radial vibrations of an elastic sphere with a 

dispersion law w = kq, where admissible frequencies are defined by the boundary condition 
c:(R) = 0, are well known (see, for example, [ZO]).  Suppose we place the disclination 
monopole at the centre of a sphere. In this case, we have to analyse (40). This can be done 
in the same manner as in the previous subsection. Namely, one can write (40) in the form 
(35) by the substitution z(r)  = u ( r ) r m .  At large distances we get 

where U,’ = (3h + 2y)jpo. This asymptotic solution is the same as in the defect-free 
case, but vs again exceeds the sound velocity U,. As r + 0, the r-dependent solution for 
u ( r )  tends to zero more rapidly than that for the vortex, namely u(r)lr.-o - r4I3. All the 
conclusions made at the end of the previous subsection are valid here as well. 

5. Conclusion 

In this paper we have presented a new approach, based on the gauge theory of defects, which 
allows us to describe the vibrationa! properties of defect elastic continua. We have derived 
the general equations describing small vibrations in defect media. As an illustration of 
the method we reproduced the known results for materials with straight screw dislocations. 
We have considered the long-wave elastic vibrations in isotropic materials with straight 
wedge disclinations and a disclination monopole. The analysis shows that the character of 
vibrations in the presence of a topologically unstable disclination only slightIy differs from 
that in defect-free materials. When topologically stable defects are present, the character of 
the vibrations is found to be essentially altered, especially in the core region. Depending 
on the geometry of the problem, at long distances from the defect line there are ordinary 
radial vibrations (planar or spherical) but the sound velocity is found to exceed that in a 
defect-free elastic body. In the vicinity of the disclination line the amplitude u ( r )  becomes 
independent of the frequency and sound velocity and has power-like asymptotics. 

As is known, disclinations can play an important role in disordered materials, like 
amorphous bodies, glasses, liquid crystals, polymers etc. In particular, recent progress in 
the theoretical description of liquids and metallic glasses has been inspired by the new point 
of view of their structure. An attractive model was proposed by Klkman and Sadoc [Zl] 
who showed that dense random packing can be carried out by the mapping into flat space of 
tetrahedra which tile a space with an appropriately chosen curvature. This mapping leads to 
various kinds of defects, including disclinations. This idea was developed by Nelson, who 
considered disclinations as the fundamental defects in metallic glasses [22]. An interesting 
idea has also been proposed by Rivier who considered topologically stable line defects in 
glasses [23]. It would be very interesting therefore to apply our approach to the description 
of spectral properties in these materials. To this end, we have to extend the gauge model in 
order to take into account the dense packing of defects. A detailed analysis of this important 
problem requires further investigation. 
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